点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:玛雅彩票计划群_玛雅彩票开奖结果
首页>文化频道>要闻>正文

玛雅彩票计划群_玛雅彩票开奖结果

来源:玛雅彩票娱乐2024-06-23 17:48

  

玛雅彩票计划群

全球经济增速急剧放缓******

  世界银行发布最新一期《全球经济展望》报告指出,在通胀高企、利率上升、投资减少的背景下,全球经济增速正在急剧放缓,预计2023年全球增长将从6个月前预测的3%降至1.7%。

  报告认为,增长急剧下滑将是一个普遍现象,95%的发达经济体、近70%的新兴市场和发展中经济体的2023年经济增长预测都较此前预测数据有所下调。在目前的经济形势下,任何新的不利因素都可能将全球经济推入衰退。如果出现这种情况,那将是80多年来首次在同一个10年期内连续发生两次全球衰退。

  “随着全球经济前景恶化,各项危机也在加剧。”世界银行行长戴维·马尔帕斯认为,全球资本被那些政府债务水平极高且利率不断上升的发达经济体所吸纳。在这种情况下,新兴市场和发展中经济体受制于债务压力,可能在未来多年内增长乏力。同时,教育、卫生、减贫和基础设施等领域的发展成果已经遭到逆转,而经济增长和商业投资的疲软将会进一步加剧这一趋势,并使各国更难以应对与气候变化有关的各种需求。

  报告预计,2023年发达经济体的经济增长速度将从2022年的2.5%降至0.5%。根据过去20年的经验,这种大幅下滑往往是全球衰退的先兆。

  根据报告,预计2023年美国经济增速将降至0.5%,比之前的预测低1.9个百分点,这将是自1970年以来除官方认定的衰退期以外美国经济表现最差的一年。预计2023年欧元区经济零增长,比之前预测下调了1.9个百分点。预计2023年中国经济将增长4.3%,较之前的预测低0.9个百分点。除中国以外的新兴市场和发展中经济体的增长率预计将从2022年的3.8%降至2023年的2.7%,主要原因是外部需求大幅下滑。

  报告预计,未来两年新兴市场和发展中经济体人均收入平均每年增长2.8%,这比2010年至2019年的平均水平低了整整1个百分点。在撒哈拉以南非洲地区,预计2023年至2024年人均收入年均增长率仅为1.2%,这可能导致贫困率有所上升。报告显示,到2024年底,新兴市场和发展中经济体的GDP水平将比新冠疫情前的预期水平低6%左右。尽管全球通胀将有所回落,但仍会高于疫情暴发前的水平。

  这份报告首次对新兴市场和发展中经济体的中期投资增长前景进行了全面评估。在2022年至2024年期间,这些经济体的总投资年均增长预计约为3.5%,不到此前20年普遍增幅的一半。针对这一情况,报告专门为政策制定者提供了加快投资增长的一系列建议。

  “投资低迷是一个值得关注的严重问题,因为它可能导致生产率难以提高、贸易表现疲软,从而削弱整体经济前景。没有强劲和持续的投资增长,就不可能实现广泛的发展。”世界银行预测局局长阿伊汗·高斯说,“各国促进投资增长的具体政策需要适应各自国情,但无论如何都要从建立健全财政货币政策框架以及开展全面的投资环境改革着手。”

  报告显示,东亚与太平洋地区经济继2021年强劲反弹后,2022年增速明显放缓,预计全年增幅为3.2%,较之前的预测低1.2个百分点。2023年东亚与太平洋地区的经济增长率将稳步上升至4.3%。2022年,本地区通胀水平有所上升。尽管如此,与世界上其他地区相比,东亚与太平洋地区的价格压力普遍较小,重要原因之一是潜在增长率相对较高、复苏进程较慢导致本地区仍然存在负产出缺口。

  报告还指出,目前影响东亚与太平洋地区经济发展的主要下行风险仍然存在,包括疫情可能再次扰乱经济、全球金融政策收紧幅度超出预期、全球经济增长放缓以及与气候变化相关的破坏性天气事件频繁发生等。如果乌克兰危机旷日持久、地缘政治不确定性继续加剧,则可能进一步损害全球商业信心和消费者信心,导致本地区出口增长放缓幅度超出预期。柬埔寨、马来西亚、蒙古国和越南等尤为依赖出口的经济体特别容易受到出口需求下滑的影响,本地区与气候变化相关的破坏性天气事件也正变得日益频繁。(周明阳)

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 实拍男模走秀踩鞋带摔倒身亡 观众以为在表演

  • 临沂商城奋斗模式火力全开

独家策划

推荐阅读
玛雅彩票骗局 百亿营收国企广物控股将和商贸控股合并,曾被巡视组点名整改
2024-02-06
玛雅彩票规则世乒赛-马龙男单三连冠
2024-04-22
玛雅彩票注册 因奔驰销量下滑 戴姆勒Q1运营利润下降16%
2024-04-22
玛雅彩票技巧腾讯公布2017年第三季度业绩
2024-06-30
玛雅彩票走势图董明珠正式赢得与雷军的"十亿赌约"
2024-10-22
玛雅彩票客户端美女子或因丢弃小狗被监禁
2024-06-24
玛雅彩票充值汇源自救方案公布!与“猪肉大王”天地壹号合作
2024-05-03
玛雅彩票官网平台 不愿单方面让步,日本拒绝对美国扩大农业市场准入
2024-08-23
玛雅彩票手机版APP古人是如何控制贫富悬殊的?
2024-12-10
玛雅彩票手机版中国国际软件发展大会暨第五届中国软件产业年会
2024-05-07
玛雅彩票计划还嫌大蒜"重口味"?可人家除了防癌还能防止记忆衰退
2024-03-10
玛雅彩票赔率 日本“十连休”,有人欢喜有人忧
2024-03-27
玛雅彩票下载app美军舰通过台湾海峡 外交部:全程掌握有关情况
2024-03-29
玛雅彩票官方内蒙古邢云被开除党籍 落马时已退休近3年
2024-09-11
玛雅彩票app下载20岁后做什么,未来10年能够受益匪浅?
2024-06-14
玛雅彩票代理 宠物摄影师为流浪狗拍写真
2024-07-14
玛雅彩票登录中俄海上军演这型舰艇参演引关注
2024-12-08
玛雅彩票邀请码为啥都在夸这没到7分的英超片
2024-09-30
玛雅彩票漏洞 崩溃!女子9000元的“战斗鸡”被人偷宰准备下锅
2024-10-02
玛雅彩票app江苏原副省长被双开:两会期间严重破坏会风
2024-04-26
玛雅彩票网址首度披露!重庆公安局原局长何挺下属已被双开
2024-02-01
玛雅彩票客户端下载能试驾了?理想ONE 4S店开了
2024-06-23
玛雅彩票玩法仲为国:从马云回应996看企业发展挑战
2024-06-25
玛雅彩票下载 国产“特斯拉”亮相,3.4秒破百,一看定价,车友:来一沓
2024-06-17
加载更多
玛雅彩票地图